Subunit composition of neurofilaments specifies axonal diameter
نویسندگان
چکیده
Neurofilaments (NFs), which are composed of NF-L, NF-M, and NF-H, are required for the development of normal axonal caliber, a property that in turn is a critical determinant of axonal conduction velocity. To investigate how each subunit contributes to the radial growth of axons, we used transgenic mice to alter the subunit composition of NFs. Increasing each NF subunit individually inhibits radial axonal growth, while increasing both NF-M and NF-H reduces growth even more severely. An increase in NF-L results in an increased filament number but reduced interfilament distance. Conversely, increasing NF-M, NF-H, or both reduces filament number, but does not alter nearest neighbor interfilament distance. Only a combined increase of NF-L with either NF-M or NF-H promotes radial axonal growth. These results demonstrate that both NF-M and NF-H play complementary roles with NF-L in determining normal axonal calibers.
منابع مشابه
Neurofilament-dependent Radial Growth of Motor Axons and Axonal Organization of Neurofilaments Does Not Require the Neurofilament Heavy Subunit (NF-H) or Its Phosphorylation
Neurofilaments are essential for establishment and maintenance of axonal diameter of large myelinated axons, a property that determines the velocity of electrical signal conduction. One prominent model for how neurofilaments specify axonal growth is that the 660-amino acid, heavily phosphorylated tail domain of neurofilament heavy subunit (NF-H) is responsible for neurofilament-dependent struct...
متن کاملThe optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis.
Neurofilaments have been proposed to regulate axonal stability and diameter through changes in number and subunit composition. We have found that pathway and target innervation directly influence the molecular composition of neurofilaments within regenerating optic axons of Xenopus laevis. Immunocytochemistry was used to examine neurofilaments within two abnormal visual pathways. The first was ...
متن کاملIncreasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons
The carboxy-terminal tail domains of neurofilament subunits neurofilament NF-M and NF-H have been postulated to be responsible for the modulation of axonal caliber. To test how subunit composition affects caliber, transgenic mice were generated to increase axonal NF-M. Total neurofilament subunit content in motor and sensory axons remained essentially unchanged, but increases in NF-M were offse...
متن کاملAge-Related Atrophy of Motor Axons in Mice Deficient in the Mid-Sized Neurofilament Subunit
Neurofilaments are central determinants of the diameter of myelinated axons. It is less clear whether neurofilaments serve other functional roles such as maintaining the structural integrity of axons over time. Here we show that an age-dependent axonal atrophy develops in the lumbar ventral roots of mice with a null mutation in the mid-sized neurofilament subunit (NF-M) but not in animals with ...
متن کاملAbsence of the Mid-sized Neurofilament Subunit Decreases Axonal Calibers, Levels of Light Neurofilament (NF-L), and Neurofilament Content
Neurofilaments (NFs) are prominent components of large myelinated axons and probably the most abundant of neuronal intermediate filament proteins. Here we show that mice with a null mutation in the mid-sized NF (NF-M) subunit have dramatically decreased levels of light NF (NF-L) and increased levels of heavy NF (NF-H). The calibers of both large and small diameter axons in the central and perip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 133 شماره
صفحات -
تاریخ انتشار 1996